【必备】小学数学教案3篇
作为一名教师,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。来参考自己需要的教案吧!以下是小编为大家收集的小学数学教案3篇,欢迎阅读,希望大家能够喜欢。
教学目标:
1、理解质数和合数的概念,知道它们之间的联系和区别。
2、找出100以内的所有质数,能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
3、经历质数和合数的认识和辨别过程,培养观察、比较、归纳概括的能力。
4、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学过程:
一、创设情境,引入课题。
我们已经学习了求一个数的因数的方法,你能正确求出1——20各数的因数吗?
小组比一比,看谁列得快。教师指名汇报。
二、动手操作,制质数表。
(1)找因数。
观察这些数的因数,如果按因数的个数,你认为可以怎样分类?
动手给20以内的数按因数的个数进行分类,填书P23。
观察黑板上的三类数各有什么特点?
师:只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。
结合1——20各数,解释一下什么是质数?什么是合数?[板书概念]
齐读20以内的质数、合数。
问:最小的质数是几?最小的合数是几?
1是质数,还是合数呢?[板书:1既不是质数,也不是合数]
如果把整数按自然数的个数来分类,可以分为几类?哪几类?再次强调:1既不是质数,也不是合数。
要判断一个数是质数还是合数,关键是看什么?
你的学号是质数,还是合数?与同桌说一说,并互相判断对错。
P23做一做。独立练习,全班交流检查。
(2)找质数。
刚才我们已经找出了20以内的质数,那“73”它是不是质数。
要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。这表从哪来呢?
(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)
师:对,逐个判断比较麻烦,是否有什么方法可以很快地找出来?用排除法可以吗?
因为质数只有1和它本身两个因数,那么质数的倍数就都是合数,只要在数字表上依次划出质数的倍数,剩下的就是质数了。
学生根据教师的指导,在教材第24页用排除法动手制作100以内的质数表,然后再在全班交流。
一起把100以内的'质数读一读。
附:100以内质数顺口溜
二、三、五、七、一十一
十三、十七、一十九
二三九、三一七
五三九、六一七
四一三七、七一三九
八三、八九、九十七
三、练习巩固:
完成练习四第1、2题。
四、课题小结:
这节课你在激烈的讨论中有什么收获?
教学目的与要求
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学过程
一、创设情境
以前我们学习了分数的意义,下面请同学们看黑板上贴的长方形纸,涂色部分分别表示这张纸的几分之几?随着学生的回答,教师继续对它们进行操作,并引出新课
二、组织探究
1、教学例4 出现教材中的图形
然后问:画斜线部分是1/2 的几分之几?又是这个长方形的几分之几?
由此明确:1/2 的1/4 是1/8 ,1/2 的3/4 是3/8
启发学生进一步思考:求1/2 的1/4 是多少,可以怎样列式?
求1/2 的3/4 呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书p45完成
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母
2、教学例5
(1)让学生说说23 ×15 和23 ×45 分别表示23 的几分之几?
你能用前面得出的结论计算这两道题吗?
学生试做
订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较
让学生在自己准备的长方形纸上先涂色表示23
再画斜线表示23 的15 和23 的45
学生动手操作,教师巡视对学困生进行指导
看看操作的结果与你计算的结果是否一致?
学生观察比较
3、归纳总结
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?
得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
三、练习
1、完成p46的试一试
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算
通过交流进一步明确计算分数与分数相乘的计算方法
四、分数与分数相乘的计算方法的推广
同学们,下面着几道题你回计算吗?
出示:2/11 ×3=
4×5/6 =
请同学们先完成p46的填空,提醒学生把整数看作分母是1的分数来计算
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
学生分组讨论
明确:(1)整数可以看作分母是1的分数,所以分数与分数相乘的计算方法也适用于分数和整数相乘
(2)实际计算时可以直接按以前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便
(3)也可以整数与分数直接进行约分后再计算。这样更简便
教师进行示范如p46
2、练习
完成p46的练一练
引导学生用直接约分的方法进行计算
五、综合练习
1、做练习九的第1题
先在图中画一画再列式计算
2、做练习九的第3题
说出错的原因
3、做练习九的第4题
看谁算的最快
六、全课小结
通过这节课的学习,你有什么收获?还有什么疑惑?
七、作业
练习九的第2、5题
教后记:本课的目的是使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则,进一步巩固分数乘法的计算法则。基本达到教学要求。
教学内容:正比例的意义。
教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。
教学重点:正比例的意义。
教学难点:正比例的判断。
教具准备:小黑板、投景影片
教学过程:
一、 复习
根据下面各题,先口答列式及得数,后说数量关系式。
1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?
2、 一种布,买3米共要27元,平均每米布多少元?
3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?
师据学生回答板书如下:
路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率
二、引新
我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)
三、新授
1、 教学例1。一列火车行驶的时间和所行的路程如下表。
时间(时) 1 2 3 4 5 6 7 8
路程(千米) 90 180 270 360 450 540 630 720
(1) 引导学生观察上表内数据。
(2) 边观察边思考下面问题:
(1) 表中有哪几种量?这两促量有没有关系?
(2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)
(3) 引导学生分析这两种相关联的量的变化有什么规律?
(1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:
90/1=90 360/4=90 540/6=90
(2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)
(3)师:它们之间的关系可以用式子表示
路程/时间=速度(一定)
(4) 小结。
时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。
2、 教学例2
(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。
数量(米) 1 2 34 5 6 7
总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4
(2)引导学生观察上表内的数据。
(3) 回答下面风个问题:
表中有哪两种量?这两种量有关系吗?为什么?
这两种量是怎样变化的?
它们的变化有什么规律?
相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?
(4) 小结。
花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。
3、 概括正比例的意义及关系式。
(1) 比较上面的例1和例2,它们有什么共同点?
(2) 判断成正比例量的方法:是什么?
(3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(4) 概括关系式:
Y/X=K(一定)
4、 教学例3。
出示例3
师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)
5、 小结。
判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。
四、巩固练习
第13页做一做
五、 总结。
1、 什么叫成正比例的量?
2、 怎样判断两种量是成正比例的量?
六、 作业: 完成练习六第1-3题。
文档为doc格式